3 research outputs found

    The influence of channel and source degradations on intelligibility and physiological measurements of effort

    Get PDF
    Despite the fact that everyday listening is compromised by acoustic degradations, individuals show a remarkable ability to understand degraded speech. However, recent trends in speech perception research emphasise the cognitive load imposed by degraded speech on both normal-hearing and hearing-impaired listeners. The perception of degraded speech is often studied through channel degradations such as background noise. However, source degradations determined by talkers’ acoustic-phonetic characteristics have been studied to a lesser extent, especially in the context of listening effort models. Similarly, little attention has been given to speaking effort, i.e., effort experienced by talkers when producing speech under channel degradations. This thesis aims to provide a holistic understanding of communication effort, i.e., taking into account both listener and talker factors. Three pupillometry studies are presented. In the first study, speech was recorded for 16 Southern British English speakers and presented to normal-hearing listeners in quiet and in combination with three degradations: noise-vocoding, masking and time-compression. Results showed that acoustic-phonetic talker characteristics predicted intelligibility of degraded speech, but not listening effort, as likely indexed by pupil dilation. In the second study, older hearing-impaired listeners were presented fast time-compressed speech under simulated room acoustics. Intelligibility was kept at high levels. Results showed that both fast speech and reverberant speech were associated with higher listening effort, as suggested by pupillometry. Discrepancies between pupillometry and perceived effort ratings suggest that both methods should be employed in speech perception research to pinpoint processing effort. While findings from the first two studies support models of degraded speech perception, emphasising the relevance of source degradations, they also have methodological implications for pupillometry paradigms. In the third study, pupillometry was combined with a speech production task, aiming to establish an equivalent to listening effort for talkers: speaking effort. Normal-hearing participants were asked to read and produce speech in quiet or in the presence of different types of masking: stationary and modulated speech-shaped noise, and competing-talker masking. Results indicated that while talkers acoustically enhance their speech more under stationary masking, larger pupil dilation associated with competing-speaker masking reflected higher speaking effort. Results from all three studies are discussed in conjunction with models of degraded speech perception and production. Listening effort models are revisited to incorporate pupillometry results from speech production paradigms. Given the new approach of investigating source factors using pupillometry, methodological issues are discussed as well. The main insight provided by this thesis, i.e., the feasibility of applying pupillometry to situations involving listener and talker factors, is suggested to guide future research employing naturalistic conversations

    Evolution over Time of Ventilatory Management and Outcome of Patients with Neurologic Disease∗

    No full text
    OBJECTIVES: To describe the changes in ventilator management over time in patients with neurologic disease at ICU admission and to estimate factors associated with 28-day hospital mortality. DESIGN: Secondary analysis of three prospective, observational, multicenter studies. SETTING: Cohort studies conducted in 2004, 2010, and 2016. PATIENTS: Adult patients who received mechanical ventilation for more than 12 hours. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Among the 20,929 patients enrolled, we included 4,152 (20%) mechanically ventilated patients due to different neurologic diseases. Hemorrhagic stroke and brain trauma were the most common pathologies associated with the need for mechanical ventilation. Although volume-cycled ventilation remained the preferred ventilation mode, there was a significant (p < 0.001) increment in the use of pressure support ventilation. The proportion of patients receiving a protective lung ventilation strategy was increased over time: 47% in 2004, 63% in 2010, and 65% in 2016 (p < 0.001), as well as the duration of protective ventilation strategies: 406 days per 1,000 mechanical ventilation days in 2004, 523 days per 1,000 mechanical ventilation days in 2010, and 585 days per 1,000 mechanical ventilation days in 2016 (p < 0.001). There were no differences in the length of stay in the ICU, mortality in the ICU, and mortality in hospital from 2004 to 2016. Independent risk factors for 28-day mortality were age greater than 75 years, Simplified Acute Physiology Score II greater than 50, the occurrence of organ dysfunction within first 48 hours after brain injury, and specific neurologic diseases such as hemorrhagic stroke, ischemic stroke, and brain trauma. CONCLUSIONS: More lung-protective ventilatory strategies have been implemented over years in neurologic patients with no effect on pulmonary complications or on survival. We found several prognostic factors on mortality such as advanced age, the severity of the disease, organ dysfunctions, and the etiology of neurologic disease
    corecore